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Abstract An algorithm is presented for the estimation of molecular properties over
a library built around a scaffold, which has N sites for functionalization with Mi

moieties at the i th scaffold site, corresponding to a library of
∏N

i=1 Mi molecules.
The algorithm relies on a series of operations involving (i) synthesis and property
measurement of a minimal number of T randomly sampled members of the library,
(ii) expression of the observed property in terms of a high-dimensional model repre-
sentation (HDMR) of the moiety → property map, (iii) optimization of the ordered
sequence of moieties on each site to regularize the HDMR map and (iv) interpolation
using the map to estimate the properties of as yet unsynthesized compounds. The
set of operations is performed iteratively aiming to reach convergence of the predic-
tive HDMR map with as few synthesized samples as possible. Through simulation, the
number T of required random molecular samples is shown to scale very favorably with
T <<

∏N
i=1 Mi for cases up to N = 20 and Mi = 20. For example, high estimation

quality was attained for simulated libraries with T ∼ 5,000 sampled compounds for
a library of 2012 members and T ∼ 12,500 sampled compounds for a library of 2020

members. The algorithm is based on the assumption that a systematic pattern exists in
the moiety → property map provided that the moieties are optimally ordered on the
scaffold sites within the context of HDMR. The overall procedure is referred to as the
substituent reordering HDMR algorithm (SR-HDMR). The technique was also suc-
cessfully tested with laboratory data for estimating C13-NMR shifts in a tri-substituted
benzene library and for lac operon repression binding.
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1 Introduction

Accurate estimation of the chemical and physical properties of compounds has appli-
cations in a broad range of fields [3,5]. However, synthesis and testing of very large
libraries of compounds to seek members with desired properties is often expensive
and time-consuming. Computational techniques such as quantitative structure-activ-
ity relationships (QSARs) and neural networks [7,13] have been utilized to assist in
property estimation over compound libraries. QSAR is a widely used technique for
estimating molecular properties based on a set of descriptors serving as independent
variables. A variety of descriptors can be employed including octanol-water parti-
tion coefficients, molecular surface area, electrostatic properties, molecular structural
features, etc. [7,13]. Given a defined set of molecular descriptors, QSAR aims to quan-
tify the relationships between these descriptors and the target property by means of
a multi-variable input-output model function. The estimation quality of QSAR-based
models rests on the proper choice of descriptors and the type of input-output function.
These choices in turn generally depend on the library type and the target property.
Since the inherent structure-property relationship is unknown in most applications,
the predictive quality of QSAR often requires case-specific selections of descriptors
and the input-output functions. Neural networks and other learning-based methods
also rely on an input of molecular descriptors for property estimation. With neural
networks, a set of “neurons” process the inputs in the form of molecular descriptors
to produce an output. The weights given to the different inputs are adjusted in order
to ensure that the final output (i.e., the estimated property of interest) is close to the
property value for each member of a training set of molecules. Again, a key step
is choosing the correct set of molecular descriptors for each particular application.
Even a large set of descriptors may not produce good estimated properties if essential
descriptors are inadvertently excluded, and overfitting may accurattely capture the
descriptor-property relationship for the training set, yet yield poor predictive quality
of the test set.

For a library of molecules built around a common scaffold with N functionalized
sites, the moieties found at each site form an inherent set of molecular descriptors
[19,20,24]. Beyond a simple labeling of the moieties at the sites, no extra measure-
ments are needed to determine these descriptors, and they specify each molecule in
the library uniquely and completely. In this formulation, the i th site is the independent
variable xi and its “values” are the substituent moieties in that site. In order to be
useful for property estimation, the variable values, initially the moiety names, must
be converted to a numerical label which can be used to estimate the overall property
value. There are many possible choices for labeling the moieties, and one method
is to assign the substituents at site i one of Mi discrete, equally-spaced values over
some range. A properly assigned ordering of these values for the variables at all of the
sites is assumed to produce a smooth property landscape F(x) = F(x1, x2, . . . , xN ),
which can be used to estimate the property value of a molecule which has not been
tested.

The substituent reordering algorithm [19,20,24] outlined above for property esti-
mation entails (a) randomly sampling a minimal subset of T molecules out of the
total number of

∏N
i=1 Mi library members, (b) measuring the property value of the
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Fig. 1 Comparison between a random and a reordered hypothetical property landscape described by
F(x1, x2) = exp[(−(x1 − 1)2 − (x2 − 1)2)/81]. The positive quadrant x1, x2 > 0 is utilized where
each variable is uniformly sampled over [1, 10]. Plot (a) shows an arbitrary ordering of the discrete substit-
uents using integer labels for x1 and x2. Plot (b) shows the result of reordering (note the relabeling along
the x1 and x2 axes). A coarse sampling of the landscape F(x1, x2) is represented by shaded bars. The white
bars are the true, but unmeasured property values of other samples. Under SR-HDMR, the reordering is
done just with the data represented by the shaded bars [24]. The ordering in (b) permits a far better inter-
polation quality for the unmeasured property values than with the same sampling in (a) having a random
order

T sampled compounds and (c) using this training set of data to estimate the property
of unsampled library members. This procedure corresponds to interpolation over the
sparsely sampled library with T <<

∏N
i=1 Mi . A key issue in step (c) is the proper

ordering of the xi variable values for all of the Mi substituents at the i th substitution
site (e.g., in the case of an amino acid site on a protein scaffold, each of the residues
would be assigned an unique integer value from 1 to 20 based on the residue’s con-
tribution to the protein property in coordination with residues at other sites) so that
the resultant property landscape can provide the best estimation capability for the un-
sampled compounds. The basic foundations of the molecular ordering algorithm have
been applied to scaffolds [19,20,24] with N = 2 sites, and this paper will introduce
special techniques permitting the efficient treatment of cases for large values of N .

Figure 1 illustrates the reordering algorithm for a hypothetical property landscape
F(x1, x2) = exp[−[(x1 − 1)2 + (x2 − 1)2]/81] with N = 2 sites and associated
variables x1 and x2. A molecular property landscape is inherently discrete, which is
represented here by x1 and x2 uniformly taking integer values over the range [1, 10].
The order of the integer labels is randomly permuted in Fig. 1a. The consideration of
random labeling reflects the fact that initially the moiety → property relationship will
not be known and will generally produce an apparently rough property landscape.

In Fig. 1, the shaded bars represent the known T = 33 property values for a set
of measured samples and the white bars represent the true property values of sam-
ples which were not tested (i.e., these are the property values to be estimated). In
the landscape of Fig. 1a with random ordering, there are no visible trends, making
it impossible to accurately estimate the true property values of the untested samples
even from “neighbors” that are available. In the reordered smooth landscape of Fig. 1b,
based on just using the T samples, it is possible to estimate the property value of an
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untested compound utilizing the tested compounds near it. Translation of this proce-
dure into a molecular discovery algorithm [19,20,24] rests on the assumption that a
well-defined library of compounds will have a smooth property function F(x) upon
proper identification of the site index ordering. This assumption has been verified and
the reordering strategy has been successfully implemented in diverse applications,
including estimation of the glass transition temperatures [24] in copolymers, photolu-
minescent quantum yields and emission energies of transition metal complexes [19],
and inhibitor efficacies of a pharmaceutical library [20]. Importantly, the algorithm
uses local interpolation, thus a specific global form for F(x) does not need to be
specified.

While these previous applications of the substituent reordering procedure were
very successful in achieving reliable property estimation, all the compound libraries
had N = 2 substitution sites. When the dimensionality N of the library increases, the
reordering and property estimation algorithms used for these low-dimensional libraries
do not scale well in terms of the sampling effort for reliable operation. The original
work [24] speculated that property estimation could be performed efficiently for high
dimensional libraries, and this paper presents a practical procedure to accomplish this
task. We will integrate the high dimensional model representation (HDMR) technique
[17] with the substituent reordering method to address the need for efficient molecular
discovery in high dimensional scaffold-based libraries (e.g., for proteins). HDMR is
a general procedure for nonlinear high-dimensional data analysis, data-driven model-
ing, and property interpolation. It operates by decomposing a high-dimensional input
→ output function into a hierarchy of lower-dimensional, generally nonlinear HDMR
component functions. The HDMR decomposition is the central factor enabling favor-
able sampling scalability and high efficiency for property estimation with increasing
N . The HDMR decomposition has been successfully used to model systems with large
numbers of input variables [25,26]. However, these applications did not require reor-
dering of the input variables. This paper exploits the hierarchical component function
breakdown in HDMR to manage the nominally difficult reordering problem in high
dimensions.

The relationship between the property F(x) and the substituents x = (x1, x2, . . . ,

xN ) for the training set of T compounds is decomposed by HDMR into a family
of lower-dimensional component functions of one variable, two variables, etc. The
substituent reordering technique is then applied to each of the HDMR component
functions to separately obtain their respective optimal substituent ordering. The sum
of these optimally ordered component functions constitutes the map of the contri-
butions of the substituents at the N sites to the property, and this map specifies the
N -dimensional landscape used for subsequent property interpolation (estimation). In
this fashion HDMR permits the identification of a family of optimal site moiety order-
ings with each tuned to the various site-site interaction contributions to the property. As
a result, the integration of HDMR with the substituent reordering procedure produces a
scalable technique for molecular property estimation and optimization in high-dimen-
sional libraries. The scalable character of the algorithm arises because each of the T
randomly sampled training set members corresponds to a point in the N dimensional
moiety space which projects into each of the low dimensional HDMR component
functions. In this fashion good moiety coverage is provided, despite T being much
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Fig. 2 Summary of the SR-HDMR procedure. In step A, the library is defined by choosing the scaffold,
sites, and substituents. In step B, a set of T compounds from the library are synthesized in the laboratory
and their property values are measured forming a training set to determine the HDMR expansion. The
operations C, D, and E enclosed in the square generate the SR-HDMR for the property being estimated.
In step C, the component functions which are not yet included in the HDMR approximation are searched
over to determine the most significant possible new members. Each candidate component function has its
optimal ordering determined and then expressed in terms of basis functions. The process starts with first
order component functions, and when no further first order functions are significant then the second order
component functions are considered, etc. Subsequently, backfitting of the component functions occurs in
step D. In this step every component function in the HDMR approximation is removed one at a time, recal-
culated (with optimal reordering and refitting), and included in the HDMR expansion if it is still significant.
In step E, the procedure repeats if the estimation quality has not converged. If the estimation quality for the
training set, as measured by r2 or some other metric, is not satisfactory in step F once it has converged,
the training set is increased in step G. The process is then restarted with a larger portion of the library. If
the predictive quality for the training set is satisfactory, then step H uses the SR-HDMR as a predictive map
for estimation of the property value of other as yet unsynthesized library members

smaller than the overall library size. Figure 2 shows the general operational steps
of the integrated technique, which we refer to as the Substituent Reordering HDMR
(SR-HDMR) algorithm.

To illustrate the capabilities of SR-HDMR, the procedure will be applied to esti-
mate C13 NMR shifts for a trisubstituted benzene library (i.e., N = 3 variables and
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library size 103) and for lac operon repression with N = 4 and a library of size 6,400.
In order to fully evaluate the capabilities of the SR-HDMR technique for handling
high-dimensional libraries, we also performed tests using several types of simulated
property landscapes for up to N = 20 substitution sites and Mi = 20 substituents on
each site i . The results show that sampling ∼15,000 compounds (out of 2020 possi-
ble library members) is sufficient to achieve excellent estimation quality in a broad
variety of tests. These collective illustrations demonstrate that integration of HDMR
and substituent reordering provides a scalable and generally applicable SR-HDMR
strategy for molecular discovery in high-dimensional scaffold-based libraries.

Section 2 explains the SR-HDMR procedure. Section 3 presents illustrative appli-
cations of SR-HDMR to estimate C13 NMR shifts, lac operon repression, and the
properties of large simulated libraries. Section 4 provides concluding remarks. The
Appendices A, B, and C present additional details on the procedure described in Sect. 2.

2 The SR-HDMR algorithm

The SR-HDMR strategy melds together substituent reordering and HDMR. A synopsis
of both techniques is presented here with additional details given in the Appendices.

The perspective adopted with SR-HDMR is to (i) minimally sample T members
of a library and then (ii) estimate the properties of the entire remainder of the yet un-
synthized memebers. The overall gain can be dramatic with T <<

∏N
i Mi . However,

an even further reduction in sampling would likely be afforded by directly appling
suitable optimization algorithms seeking to find one library memeber with favorable
properties. With SR-HDMR aiming to capture the entire property landscape, all good
library members may be identified.

2.1 High dimensional model representation

HDMR provides a mapping x → F for functions F(x) = F(x1, x2, . . . , xi , . . . , xN )

with the specific goal of interpolating over F(x) from a known coarsely sampled set
of input values xr , r = 1, 2, . . . , T and the associated observed outputs F(xr ). Each
of the independent variables x1, x2, . . . , xi , . . . , xN of the function is assumed to take
on a finite range of values that can then be scaled to the [0, 1] domain. The function
F(x) is decomposed by HDMR into a sum of lower dimensional components [17]:

F(x)= f0+
N∑

i=1

fi (xi ) +
∑

1≤i< j≤N

fi j (xi , x j ) + · · · + f12...N (x1, x2, . . . , xN ) (1)

where each of the component functions represents the unique contribution of its vari-
ables to the value of the property F(x): f0 is the base contribution which is independent
of the values of the x variables, fi (xi ) is the contribution of substituents at site i on
the scaffold acting alone, fi j (xi , x j ) is the cooperative contribution of substituents at
sites i and j , etc.
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The component functions of the HDMR decomposition can be expressed as:

f0 = 1
∏N

k=1 Mk

M1∑

x1=1

· · ·
Mk∑

xk=1

· · ·
MN∑

xN =1

F(x) (2a)

fi (xi ) = 1
∏N

k=1,k �=i Mk

⎛

⎝
M1∑

x1=1

· · ·
Mi−1∑

xi−1=1

Mi+1∑

xi+1=1

· · ·
MN∑

xN =1

F(x|xi )

⎞

⎠ − f0 (2b)

fi j (xi , x j ) = 1
∏N

k=1,k �=i, j Mk

⎛

⎝
M1∑

x1=1

· · ·
Mi−1∑

xi−1=1

Mi+1∑

xi+1=1

· · ·
M j−1∑

x j−1=1

M j+1∑

x j+1=1

. . . (2c)

. . .

MN∑

xN =1

F(x|xi , x j )

⎞

⎠ − fi (xi ) − f j (x j ) − f0

Here we have used the notation F(x|xi ), F(x|xi , x j ), etc to clarify the operations
involved. The expression F(x|xi ) is the property value of a sample which has sub-
stituent xi fixed at site i . The remaining sites k �= i variables can take on all of their
Mk values. Similarly, F(x|xi , x j ) is the property value when the substituents xi , x j

are fixed (at the respective i th and j th sites) and the remaining sites with k �= i, j can
again take on any of their Mk values. Similar notation would apply to higher order
terms as well. The component functions also satisfy:

Mi∑

li =1

fi (xli
i ) = 0 (3a)

Mi∑

li =1

fi j (xli
i , x j ) = 0 (3b)

M j∑

l j =1

fi j (xi , x
l j
j ) = 0 (3c)

. . .

where xli
i is the li th substituent in the i th site and the sums are over all such substit-

uents. The HDMR formulation in Eqs. (3)a–c assures that the component functions
fi , fi j , . . . are orthogonal to each other [18]. In practice, the entire set of library mem-
bers will be unavailable in accord with the overall goal of estimating the properties
of missing members. Under these conditions, the component functions in the HDMR
expansion are determined using a random sample of T compounds from the entire
library. The details of how this sample is used to determine the component functions
are discussed in Appendix A.

The HDMR expansion of F(x) taken to the N th order in Eq. (1) is always an
exact [17] representation of F(x). In most realistic applications, the HDMR compo-
nent functions up to the second or third order are typically sufficient to quantitatively
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describe the input → output relationship [18] x → F . In particular, it is expected
that F(x) ≈ f0 + ∑N

i=1 fi (xi ) + ∑
1≤i< j≤N fi j (xi , x j ) often should be adequate for

the representation of molecular properties, as this coincides with the statement that up
to pairwise cooperative interaction between substituents at different sites should be
sufficient. In this fashion, HDMR reduces the initial function of N variables to a set of
component functions of less than three variables. Importantly, each of these compo-
nent functions now resembles a property landscape analogous to the low dimensional
scaffold-based libraries treated previously without HDMR [20,24].

The HDMR expansion provides the basis for an effective interpolator over the
full library of compounds, provided that (i) an efficient means can be established to
determine the low order component functions from a minimal sampling of T library
members and (ii) the optimal reordering of the variable values xli

i , i = 1, 2, . . . , N
with li ∈ [1, Mi ] can be performed effectively for each component function. These
steps are described below.

2.2 Optimal reordering of variables and the determination of individual component
functions

This paper considers the SR-HDMR strategy at the level of first and second order,
involving the component functions fi (xi ) and fi j (xi , x j ), respectively, although the
logic involved can be taken to any order. While a compound in the library is specified
by a point x in the full N -dimensional moiety space, at the component function level
of fi (xi ) or fi j (xi , x j ) the compound is reflected in the value of xi and the pair xi , x j ,
respectively, in the reduced dimensional space. The goal is to reliably determine the
set of all relevant HDMR component functions and render them as smooth as possible
by variable reordering for finally interpolating over the library to estimate the property
value of as yet unsynthesized compounds.

The process of determining a component function involves (a) establishing an ini-
tial approximation for the component function, (b) reordering the substituents based
on the initial approximation, and (c) expressing the reordered initial approximation
in terms of an expansion in suitable basis functions to provide a final approxima-
tion which can be used in the SR-HDMR expansion. This process can be iterated as
needed. A summary of these operations is given here (See Appendix A for details).
The initial approximation for a group of substituents, such as (xi , x j ) for fi j (xi , x j ),
is determined by calculating the unordered property contribution of samples from the
training set of size T with substituents xi and x j using Eqs. (2)a–c. In doing so the
factors

∏N
k=1 Mk,

∏N
k=1,k �=i Mk , etc. are replaced by the number of samples of type

(x|xi ), (x|xi , x j ), etc. The substituent reordering is then performed with the goal of
rearranging the substituent labels so that the resulting component function fi j (xi , x j )

is as smoothly varying as possible over (xi , x j ) which makes it a reliable interpolator.
Each of the component functions fi j (xi , x j ) will have its own unique ordering of site
moieties even if another function fik(xi , xk) involves the same site i (i.e., each pair of
variables has its own unique contribution to the property F).

As with low dimensional scaffold-based libraries [19,20,24], the low dimensional
component functions fi (xi ), fi j (xi , x j ), etc. may be fitted with basis functions. This
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work utilizes a basis of cubic B-spline functions; other choices could be employed
including simple nearest neighbor interpolation. The details of the initial approxima-
tion of the component functions, the reordering operation, and the fitting procedure
are given in Appendix A.

2.3 HDMR integrated with substituent reordering

In any particular application involving a library of compounds with a large value for
N , not all of the first and second order HDMR functions are likely to be physically
significant (i.e., certain substituents and their interactions may dominate over others).
Retaining only the significant component functions is important to avoid overfitting
and thereby enhancing the quality of the property estimation. A statistical F-test [4]
with 99 % confidence level was used to determine whether a component function is
actually significant in the SR-HDMR expansion.

In this fashion, the component functions are incorporated into the SR-HDMR
approximation one at a time. After a new component function has been added, the
component functions that were already included are recalculated. The new compo-
nent functions are affected by the component functions which are already present in
the HDMR expansion (and vice versa; see Eqs. (2)a–c) so this recalculation enhances
estimation quality by improving the accuracy of the previous and newly included com-
ponent functions. The cycle of backfitting (i.e., recalculating the component functions
already included in the HDMR) with inclusion and exclusion of component functions
based on their significance continues until an adequate fidelity for the training set is
reached or until the SR-HDMR x → F map converges. If the map has converged, but
the estimation quality is inadequate, then the training set size T can be increased and
the process repeated. Figure 2 and the accompanying caption give an overall summary
of the SR-HDMR algorithm for property estimation over high dimensional libraries,
and a more detailed explanation of the inclusion/exclusion process and backfitting
is given in Appendix B. The means for testing the significance of the component
functions is explained in Appendix C.

3 Illustrations

The SR-HDMR procedure described in Sect. 2, the Appendices and Fig. 2 was tested
in two applications with laboratory data as well as with simulated data. With labo-
ratory data SR-HDMR was used to (1) estimate C13-NMR shifts of a trisubstituted
benzene library (three scaffold sites) and (2) describe the interaction between a mutant
lac repressor and the lac operon (four scaffold sites). Since these cases have relatively
low dimensional libraries, we also performed simulations of SR-HDMR for libraries
with larger numbers of substituents and substitution sites (i.e., libraries with up to 2020

members corresponding to 20 sites and 20 moieties per site).
In all of the illustrations, the reliability of the SR-HDMR procedure is quantified

by calculating the squared correlation coefficient r2 between the true and estimated
property values. In practical laboratory operation SR-HDMR would be executed itera-
tively as indicated in Fig. 2. In this fashion the r2 value would be available upon cyclic
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operation of property estimation and testing with newly synthesized compounds. In
the present work we employ existing libraries of laboratory data or simulated data
libraries.

The examples in Sects. 3.1 and 3.2 on C13 NMR shifts and lac operon repression,
respectively, naturally include experimental noise from the laboratory data. The high
dimensional model cases in Sect. 3.3 will first be tested with no noise to better under-
stand the scaling behavior of the SR-HDMR procedure with respect to dimension N
and training set size T . Section 3.3.3 presents an assessment of the impact of noise in
high dimensional cases.

3.1 Estimation of C13 NMR chemical shifts

Using an available database [1], we collected the C13 NMR shifts for the 1-carbon
in a series of 1, 2, 4-trisubstituted benzene molecules. At each of the three substitu-
tion sites there are ten possible functional groups: –H, –CH3, –NH2, –OH, –COCH3,
–CHO, –Br, –Cl, –F, –OCH3. The shifts were measured in CHCl3 solvent with a TMS
standard. Only those samples with an assigned carbon shift for the 1-carbon were con-
sidered. When multiple entries were found for the C13 shifts in a single compound,
their chemical shifts were averaged together. Additional steps were taken if multiple
entries existed with different peak assignments for the 1-carbon (i.e., indicating a
mistake in peak assignment in at least one of the entries). In these instances, the 1-
carbon peak assignment was based on the plurality of entries whose 1-carbon shifts
were given a single value. Samples without a plurality of 1-carbon assignments were
not considered. Not all of the possible 1,000 library compounds were present in the
database, but using these criteria, 428 compounds were available from the database.
The maximum number of B-spline knots permitted for the component functions was
m = 5 (See Appendix A).

Given the limited number of samples, we performed five trials using randomly cho-
sen training sets with each having 200 samples. The average r2 was 0.991±0.006. As
a comparison, we repeated the HDMR calculations where the ordering of the substit-
uents for each HDMR component function was randomly assigned. The average r2

for these latter trials was r2 = 0.853 ± 0.129. The predictive results for a typical test
set and training set with optimal and random ordering trials is shown in the truth plots
of Fig. 3. The figure clearly shows a significant improvement in property estimation
quality when the optimal ordering is used in SR-HDMR. The truth plot achieved using
the optimal ordering has very high predictive quality for both the training and test sets.

3.2 Estimation of lac operon repression

A library of modified lac operons and repressors is available [14] where the amino
acid residues 1 and 2 in the repressor recognition helix and base pairs 4 and 5 of the
symmetric operon were varied. Out of a possible 20 × 20 × 4 × 4 = 6,400 combina-
tions, 1,288 were experimentally tested. The repression value, given as 1 + K (C) for
the equilibrium binding constant K (as a function of the repressor concentration C),
was determined by measuring the concentration of β-galactosidase synthesized using
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Fig. 3 a The truth plot of the test and training sets for estimation of C13 NMR shifts determined with
optimal substituent ordering using SR-HDMR. b The truth plot of the test and training set estimations of
C13 NMR shifts determined with random substituent ordering. The HDMR functions for both cases were
determined using a training set of 200 samples and a test set of 228. The importance of using proper ordering
in SR-HDMR is clear upon comparing (a) and (b)

the lac Z reporter gene. Repression values below 4 are the least accurate and the β-
galactosidase measurements are estimated to have a relative error of ±20 % [15]. The
laboratory sampling was also not random; while all combinations of nucleotides are
represented, many amino acid combinations are not. Certain amino acid residues are
more frequently represented for a given site, while others are rarely sampled. Although
this data set is not ideal for SR-HDMR due to its under-represented, non-random sam-
pling and low data accuracy, we still performed an analysis to evaluate the capabilities
of the integrated technique in such adverse conditions.

A slight modification of the normal SR-HDMR procedure was required. In the
previous C13-NMR example, each site had the same number of possible substituents.
However, in this case there are different numbers of substituents for the four sites. The
number of spline function knots for the nucleotide sites (only 4 substituents) is set to
m = 1 because there are not enough substituents to use more knots. The number of
knots for the amino acid sites ranges from m = 1 to m = 5. For the second order
HDMR component functions involving nucleotide and amino acids sites, the spline
functions are also similarly adjusted; rather than utilizing m ×m splines, we employed
1 × m splines.

Because the training set was so sparsely and unevenly sampled, a different reorder-
ing algorithm was used for the second order component functions. A genetic-algorithm
was employed to determine the order as described previously [24]. In this process, a
set of 100 random pairs of i and j orderings was generated; for each pair of ordered
variables, a component function was generated. The i, j orderings that gave the 10
worst component functions (i.e. the ones that fit the property values the worst) were
discarded and replaced with new orderings generated from the 90 remaining ordering
pairs. This was done by weighted random selection of two of the 90 pairs to generate
each new ordering. The weights were given as the inverse RMS distance between the
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Fig. 4 The truth plot of the
estimated ln(repression) values
for combinations of lac operons
and repressors which were each
varied at two sites. The plot
shows the quality of SR-HDMR
function for regenerating the
ln(repression) values which
were used to create it. The
results are quite satisfactory
given the dynamic range of the
data and its significant error

true property values and the property values were estimated by a spline fitting func-
tion. The new i and j orderings are randomly taken from either parent. With a 0.1
probability for either of these orderings, a mutation occurs [24] to change the order
slightly. The process of removing the poorest 10 ordering pairs and generating new
orderings continues until the algorithm fails to improve on the best possible ordering
pair for 500 generations. This best ordering of a pair of variables is utilized in the
component function that is ultimately considered for the HDMR model.

The output was taken as F = ln(1 + K (C)), and Fig. 4 shows a plot comparing
the true values with the estimated values. This plot uses SR-HDMR to estimate the
values of the same samples which were used to generate the HDMR (i.e., the train-
ing set). Trials run without reordering failed to identify any significant component
functions (all compounds had an estimated value equal to f0) and therefore could not
be used for property estimation (i.e., describing the training set in this circumstance).
It is clear from the results that in this case the estimation quality for the training set
is lower than the estimation quality in the NMR case. However, the results are quite
good considering the high uncertainty of the input values and the biased non-random
sampling.

3.3 High dimensional simulated data sets

To better evaluate the scalability of the SR-HDMR algorithm, simulated high-dimen-
sional data sets were generated using multi-variable input → output functions H(x);
the simulated trial and test data are denoted as H to distinguish from the SR-HDMR
estimate F . Two types of libraries were used to illustrate the SR-HDMR proce-
dure with property estimation under various conditions. In the first library, the prop-
erty function landscape H(x) has a Gaussian form in the N variables. Such simply
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Table 1 Average r2 for the Gaussian property training sets

Training set size 1,000 2,000 3,000 5,000
N

8 0.994 ± 0.001 0.998 ± 0.001 0.999 ± 0.000 –

12 0.996 ± 0.001 0.997 ± 0.000 0.998 ± 0.000 –

16 – – – 1.00 ± 0.00

structured landscapes are only coarsely sampled in SR-HDMR and lie in high dimen-
sions. More complex landscapes were also considered in a family of cases where the
property function H(x) is in the form of an HDMR consisting of first and second order
terms whose polynomial functions were generated independently of each other. The
landscapes in the latter cases are smooth (i.e., with properly ordered variables for each
component function) but highly complex over x. In all cases the substituent ordering
was randomized before the data was used for testing. Consequently, the SR-HDMR
algorithm is not “aware of” the true underlying functions, even when these functions
were generated by another HDMR expression. The initial tests in Sects. 3.3.1 and 3.3.2
will be free of input noise, while Sect. 3.3.3 will explore the impact of noise on the
estimation quality.

3.3.1 Simply structured property landscape

This case tests the effectiveness of SR-HDMR on simulated high dimensional data
sets when the property landscapes H(x) has a simple structural form. Importantly,
landscape simplicity or monotonicity itself is not a requirement for SR-HDMR. The
coarsely sampled and randomly ordered input data nominally hides the original regu-
larity, and these cases provide a test of SR-HDMR’s ability to identify the true simple
character of the x → H relationship.

In this case, the property function is generated as an N -dimensional Gaussian
H(x) = exp(−xT Ax) where A is a random N × N positive definite matrix with the
largest eigenvalue being 0.5. Each of the N sites had 20 substituents and their “true”
orderings corresponded to the variables being equally spaced and sequentially labeled
on [0, d] where d is a constant specifying the size of the hypercube [0, d]N . For the
N = 8, 12, and 16-D Gaussians, d was set to 0.50, 0.475, and 0.45, respectively.
These values were chosen to ensure that essentially the same range of property values
was considered for the different dimensional Gaussians in order to make comparative
tests with respect to N .

For each value of N , three random matrices A were chosen. Each A was used to
generate a training set of size T = 1,000, 2,000, and 3,000 and a test set of size
10,000 (there were three training and test sets for each N and T ). The N = 16 case
was tested for three random matrices A which were used to generate training sets of
size T = 5,000. The average r2 values for the training sets are given in Table 1 with
standard deviations determined from the multiple data sets.
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Fig. 5 The truth plot of property estimation using a 8-D Gaussian function to represent a scaffold with 8
sites and 20 substituents per site. a The truth plot of property estimate for optimally ordered substituents
in SR-HDMR. b The truth plot for random orderings of the substituents. Inserts show the distribution of
the differences between the true and estimated property values; note the change in scale along the abscissa.
These results represent the estimation quality for the test set when a training set of T = 1,000 is used
to determine the HDMR function. The SR-HDMR in (a) with reordering shows dramatically improved
estimation quality over the case of random ordering in (b)

As a typical illustration, Fig. 5 shows the truth plots for a test set with and without
reordering created for a N = 8 case and a training set of T = 1,000. The estimation
quality is excellent and the r2 for the optimally ordered trial is 0.994 while for the
randomly ordered trial it is 0.483. One noticeable feature is a slight tendency to give
overestimated property values for H(x) � 0.9. Samples with property values greater
than ∼0.9 make up less than 1 % of the library, and the modest number of random
samples did not cover this region very thoroughly.

3.3.2 Highly structured property landscapes

While the Gaussian examples above generated a globally regular property function
upon proper ordering of the variables, the SR-HDMR method only requires smooth
overall behavior of H(x). Thus, as a further test we chose property functions H(x),
as a sum of randomly generated component functions, whose overall behavior could
be quite complex. Each property function had the form H(x) = h0 + ∑n

i=1 hi (xi ) +∑
1≤i< j≤n hi j (xi , x j ) where h0 = 0, hi (xi ) = aiϕ(zi ), hi j (xi , x j ) = bi jϕ(zi )ϕ(z j ).

Here, the relation between xi and zi is through their ordering, as explained below. The
function ϕ is a shifted Legendre polynomial on [0, 1]

ϕ(zi ) = √
3(2zi − 1)

with weights ai and bi j prescribing the significance of the different contributions of
the component functions. The z-values are discrete and equally spaced between 0 and
1, inclusive for each component function. To form the substituent values for xi in each
component function the order of zi is randomized. Although this property function
has a seemingly simple form, globally H(x) is quite complex and not separable in
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Fig. 6 The property estimation quality (expressed in terms of r2) as a function of the number of substituent
sites N and the training set size T . The two shaded bars stacked on top of each white bar represent ±two
standard deviations for the average r2 for the given training set size and number of sites. The average r2

is shown as a solid line between the two shaded bars. Each average r2 was generated using a trial from
three different libraries. The average r2 significantly improves (i.e., gets larger) as the number of samples
increases for any number of sites. Very small training set sizes of ≈12,500 give excellent property estimation
quality for libraries up to 2020 members

the contributions of any of the variables. The choice of component functions satisfies
the definitions given in Eqs. (3)a–c, thus ensuring that h0 actually corresponds to the
average property value of the entire library.

As specified above, a random ordering was assigned to the substituents for each
site in any component function. Thus, the original ordering of the substituents for a
given site is different for each component function. Physically, this reflects the fact
that the substituents at site i may contribute differently to the overall property func-
tion when acting alone versus when they are jointly contributing with another site
j . Therefore, the optimal ordering at site i depends on which component function is
being considered. This behavior is accounted for in the SR-HDMR algorithm of Fig. 2.

The ai coefficient for each first order component function hi (xi ) is a pseudorandom
number generated from a Gaussian distribution centered at zero with a standard devia-
tion of 3, and the bi j coefficient for each second order component function hi j (xi , x j )

is similarly generated with a standard deviation of 1. Only ai ’s and bi j ’s between -10
and 10 were allowed. This choice of standard deviations simulates the general expec-
tation that (i) first order component functions will likely contribute more significantly
than second order component functions, (ii) most components contribute only in a
small way to the overall property value, and (iii) there are a few sites or site pairs that
can significantly affect the property.

The number of substituents M at each site was set to 20 for all the simulations and
the following number of sites were considered: N = 4, 8, 12, 14, 16, 18, and 20. For
each library of dimension N , training sets of size T = 5,000, 7,500, 10,000, 12,500,
and 15,000 were used and test sets were always of size 10,000. In this collective fashion
a broad variety of library and training set sizes were generated to assess the quality of
the SR-HDMR procedure. The average r2 results of simulations with N = 12, 14, 16,
and 18 sites are plotted in Fig. 6. As expected, the larger training sets increase the
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Fig. 7 The truth plots of property estimation for a test set from a library of samples functionalized at 20
sites with 20 substituents per site. Panel (a) uses a training set of T = 5,000 and panel (b) uses a training
set of T = 10,000. The inserts show the distribution of the differences between the true and estimated
property values; note the change in scale along the abscissa. A dramatic improvement occurs for a modest
increase in the training set size, especially considering that the overall library has 2020 members

Fig. 8 The truth plots of property estimation for a test set using a training set of T = 12,500 sampless
from a library of members functionalized at 20 sites with 20 substituents per site (a) with optimal ordering
and (b) with random ordering. The significance of employing optimal ordering is clear upon comparing (a)
and (b)

property estimation quality. The truth plots for estimation quality for 20 sites and
training set sizes T = 5,000 and T = 10,000 are given in Fig. 7. The estimation qual-
ity improves greatly for the modest increase in sample size compared to the overall
library size of 2020. Figure 8 shows the estimation quality for 20 sites with a training set
size T = 12,500 created with and without substituent reordering. This result clearly
demonstrates the necessity of reordering to obtain good quality property estimation.
The histogram inserts in Figs. 7 and 8 show the distribution of differences between the
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Table 2 Average r2
noisy-estimated for noisy data

Training set size 5,000 10,000 15,000 20,000 25,000
r2
exact-noisy

0.9 0.606 ± 0.056 0.770 ± 0.003 0.820 ± 0.004 0.840 ± 0.000 0.858 ± 0.011

0.95 0.710 ± 0.036 0.866 ± 0.003 0.902 ± 0.007 0.919 ± 0.002 0.926 ± 0.003

Table 3 Average r2
exact-estimated for noisy data

Training set size 5,000 10,000 15,000 20,000 25,000
r2
exact-noisy

0.9 0.666 ± 0.062 0.847 ± 0.010 0.900 ± 0.005 0.925 ± 0.004 0.943 ± 0.005

0.95 0.746 ± 0.041 0.910 ± 0.006 0.947 ± 0.006 0.964 ± 0.003 0.973 ± 0.003

real and estimated property values indicating the dramatic improvement with sample
size and reordering, respectively.

3.3.3 Highly structured property landscapes with Gaussian noise

The trials in Sect. 3.3.2 only considered data without noise. When Gaussian noise is
added to the data, the estimation quality improves more slowly with increasing training
set size than without added error. In order to simulate equivalent levels of Gaussian
noise in different libraries, the standard deviation of the noise added to the library
was selected such that the value of r2

exact-noisy between the initial exact data and noisy
data was approximately constant over a series of simulations. This method was used
to produce six noisy N = 16 libraries from the three libraries used in Sect. 3.3.2.
For each of the exact libraries, one noisy library with r2

exact-noisy = 0.95 and one

noisy library with r2
exact-noisy = 0.90 was created. For each new library, training sets

of size T = 5,000, 10,000, 15,000, 20,000, and 25,000 were generated. Test sets of
10,000 were utilized for each training set. The training sets were used to generate a
SR-HDMR, which was employed to estimate the property value for the test set.

Property estimation quality was measured in two different ways. The squared cor-
relation coefficient r2

noisy - estimated was calculated to assess the relationship between

the true and estimated property values. Additionally, r2
exact-estimated was calculated to

assess the relationship between the initial exact data and the estimated property val-
ues. This latter statistical measure is important because the upper bound for this value
is 1.0. The SR-HDMR procedure, should ideally not fit the random noise, and thus
the best possible estimated property values would be equal to the noise-free exact
property values. r2

noisy-estimated alone does not give information about whether a better

HDMR is theoretically possible. Tables 2 and 3 show the average r2
noisy-estimated and

r2
exact-estimated.

As expected, for each test case a comparison between Tables 2 and 3 shows that
r2

noisy-estimated is less than r2
exact-estimated. Thus, the SR-HDMR procedure is effectively

filtering out some level of noise in processing the training set data. A comparison of the
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behavior in Tables 2 and 3 with the noise-free case of N = 16 in Fig. 6 illustrates the
need for larger T to attain comparable results when noise is significant. Nevertheless,
the training set sizes required for noisy and idealized data are similar, so the increase is
modest to accommodate noisy data. For example, a training set of size T ∼ 20,000 is
large, but it is a small fraction of the total library of size 2016. The results indicate that
the SR-HDMR algorithm can be applied to high dimensional libraries with reasonable
levels of measurement uncertainty.

4 Conclusion

This paper combined the HDMR technique with optimal substituent reordering (SR)
to provide a robust SR-HDMR algorithm for molecular property estimation in libraries
with a common scaffold and multiple substitution sites. SR-HDMR decomposes the
overall property into a hierarchy of many low dimensional contributions which repre-
sent the individual and cooperative roles of the substituents located at different scaffold
sites. The simulations in Sect. 3.3 indicate that the required sampling effort of SR-
HDMR scales very favorably with respect to the number of the substitution sites and
overall library size.

The results utilizing laboratory data sets were of good quality for two diverse
properties (NMR shifts and protein repression). The treatment of the repression data
showed that the quality of the training set data and the presence of biased non-uniform
sampling of the library can impact SR-HDMR estimation fidelity. These laboratory
data tests were only 3- and 4-D, so simulated data for higher dimensions was used
to better assess the scalability of the SR-HDMR algorithm. While the library sizes
ranged from 2012 to 2020, the size of the training set necessary to attain excellent
estimation quality remained at ∼15,000 or smaller if the data had a low level of
noise. The SR-HDMR algorithm appears promising for estimating diverse properties
in large libraries, especially when combined with automated synthesis and property
measurement procedures.

This paper focused on introducing the SR-HDMR algorithm and its operational
components. In practical applications the extracted HDMR component functions
fi (xi ), fi j (xi , x j ), etc. can be further analyzed to gain physical/chemical insights
on the roles played by the substituents acting independently or cooperatively to influ-
ence the property values. In this regard the behavior of these functions, upon opti-
mal ordering of their variables, could provide valuable information. Even the norms
|| fi (xi )||, || fi j (xi , x j )||, etc. could give a simple measure of the relative roles of the
variables [16].

Further enhancement of the SR-HDMR algorithm may be considered to improve
property estimation quality. For example, the component functions may be represented
with bases, other than cubic B-splines, that are tailored to the particular application.
The current method of simply increasing the size of the training set to enhance esti-
mation quality can also be improved in some circumstances. In particular, rather than
performing a larger random sampling over the whole library, certain portions of the
library with inadequate estimation quality could be given a sampling bias, or targeted
sampling could favor domains which are found to contain compounds with desired
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property values. The first case aims at efficiently achieving good quality property
estimation for the full library, while the second case seeks a focused library. These
options will be especially important when multiple properties of the same library are
considered for optimization. The SR-HDMR capability of estimating each individual
property over the entire library can be especially valuable with several properties to
balance. In such demanding circumstances, intelligent sampling procedures guided
by multi-objective optimization algorithms [23] may increase the estimation quality
while decreasing the total amount of required sampling. Finally, the SR-HDMR algo-
rithm can potentially be expanded beyond strictly defined libraries of functionalized
molecular scaffolds. For example, by treating molecular fragments as the independent
variables [10], SR-HDMR has the capability of being utilized to estimate the property
values for libraries of diverse constituents.

Acknowledgments The authors acknowledge support form NSF and DARPA QuBE.

Appendices

A Determination of individual component functions

The process of determining the component functions within SR-HDMR has two steps
(a) reordering and (b) data fitting with a basis function expansion. Here, we present
these processes for first and second order component functions. Application to higher
order component functions is performed in a similar manner.

The HDMR expansion can compactly be written as

F(x) = f0 +
n p∑

p=1

gp + ε (4)

where gp is a first or higher order component function (e.g., fi (xi ), fi j (xi , x j ), etc.)
which depends on its associated variables from x. The number of such component
functions is n p, and ε is the residual error. The error may arise from a host of fac-
tors including operation with an insufficient number of component functions, the
approximation of the component functions, data noise, substituent ordering issues,
and possibly overfitting. The error will be referred to as the residual property value
which has not been adequately explained by the existing HDMR expansion. Adding a
new component function gk into the SR-HDMR expansion is intended to encompass
some portion of the residual property value and reduce the norm of ε (i.e., ideally
while not overfitting). The method of adding a component function for this purpose is
explained in the following subsections.
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A.1 First order component functions

Each substituent xi at site i can be assigned a value representing its contribution to the
overall property F . These values are only a preliminary estimate of the contribution of
xi to fi (xi ). The final estimate is determined by reordering the substituents and then
representing the function in a basis set.

A.1.1 Reordering for first order component functions

The average residual property value is used as a preliminary estimate of the contri-
bution of the kth substituent, xk

i , at site i to the overall property value. The average
residual property value, Ai (xk

i ), is specified as:

Ai (xk
i ) = 1

Ti (xk
i )

Ti (xk
i )∑

s=1

⎡

⎣F(xs |xk
i ) − f0 −

n p∑

p=1,gp �= fi

gp(x
s |xk

i )

⎤

⎦ (5)

where Ti (xk
i ) is the number of samples in the training set with xk

i at site i , while f0
and gp are the component functions already included in the HDMR expansion. If fi

is already included in the expansion, then it is excluded from
∑

gp. This procedure
is done in order to recalculate an included function as part of the backfitting process,
which will be described in more detail in Appendix B.

A random order gives a landscape Ai (xi ), which likely does not have any recog-
nizable pattern (i.e., analogous to the 2-D case shown in Fig. 1a). A function fitted to
such irregularly scattered data points will have poor predictive quality. For first order
HDMR functions, the substituents xi are reordered so that the values of Ai (xi ) are
in increasing or decreasing order. This process ensures that the substituents which
behave similarly (i.e., with regard to their contribution to the overall property value)
will be grouped together, thereby enabling a reliable representation of Ai (xi )

A.1.2 First order component function representation

Smoothing cubic B splines [6,18,22] were used as basis functions to represent (i.e.,
fit) the reordered average residual property values. A function on the interval of [0, 1]
is approximated using m +3 cubic B splines (Bk(x) for k = −1, 0, . . . , m +1) where
m, the number of “knots”, determines how many spline functions are used on the
interval. A first order component function is expressed as:

fi (xi ) ≈
m+1∑

r=−1

αi
r Br (xi ) (6)

The splines provide a basis to represent fi (xi ) while filtering irregularities from the
property landscape (details given in [6]). The coefficients are determined using least
squares regression. The degree of filtering or smoothness is captured by the regu-
larization parameter λ; increasing the value of λ places more weight on optimizing
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smoothness and decreasing it places more weight on optimizing the fit. The λ param-
eter was set to 10 in all trials using smoothing splines [6]. The size of m is determined
using significance testing, as described in Appendix C.

A.2 Second order component functions

The pair of substituents (xk
i , xl

j ) at sites (i, j) can be assigned a value representing
their joint contribution to the overall property F . As with the first order component
functions, preliminary estimates of the joint property contributions are used to pre-
scribe the optimal order of the substituents, and the function is then represented in a
set of basis functions to provide refined estimates of the joint property contribution
due to (xi , x j ).

A.2.1 Reordering for second order component functions

For a second order component function the average residual property value Ai j (xk
i , xl

j )

is expressed as:

Ai j (xk
i , xl

j )=
1

Ti j (xk
i , xl

j )

Ti j (xk
i ,xl

j )∑

s=1

⎛

⎝F(xs |xk
i , xl

j )− f0−
n p∑

p=1,gp �= fi j

gp(x
s |xk

i , xl
j )

⎞

⎠

(7)

where Ti j (xk
i , xl

j ) is the number of training samples with xk
i at site i and xl

j at site j .
These average values form an Mi × M j matrix of preliminary property values:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

A(x1
i , x1

j ) A(x1
i , x2

j ) · · · A(x1
i , x

M j
j )

A(x2
i , x1

j ) A(x2
i , x2

j ) · · · A(x2
i , x

M j
j )

...
...

. . .
...

A(x Mi
i , x1

j ) A(x Mi
i , x2

j ) · · · A(x Mi
i , x

M j
j )

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(8)

Here the xi ’s in each column take on Mi different values (and similarly for x j taking
on M j values in the rows). Figure 1a, b corresponds to the likely behavior of such a
matrix before and after reordering, respectively. The similarity between two substit-
uents (i.e., defined in terms of their like role upon the property value) at a given site
is determined by the similarity between two rows or two columns of the matrix. The
similarity can be represented as a “distance” between two rows or two columns. The
goal is to reorder and group together substituents that behave similarly. The matrix is
generally dense (i.e., few if any entries are unspecified), because the T samples will
likely have residual property values projected throughout the 2-D space of the second
order component functions. Reordering for dense matrices can be accomplished by a
variety of methods and here we use the “bond energy algorithm” [11]. In this fash-
ion the rows and columns of the matrix are separately reordered so as to maximize
their associated similarity. The distance (difference) di ′i ′′ between two rows i ′ and i ′′
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is given by di ′i ′′ =
[

∑M j
l=1(A(xi ′ ,xl

j )−A(xi ′′ ,xl
j ))

2

M j

]1/2

. An analogous expression can be

written for the distances between the columns of A. If A(xi ′ , x j ) and/or A(xi ′′ , x j ) are
not specified due to insufficient sampling (i.e., the training set does not contain any
samples that have a particular pair of substituents at sites i and j), the pair is left out
and M j is adjusted accordingly.

Traveling across the rows or columns of the A matrix has a distance which is incre-
mented upon going from one row or column to the next. The goal is to rearrange the
rows and columns to minimize the total distance needed to travel across the matrix
(i.e., across all the rows and across all the columns). This task is similar to the trav-
eling salesman problem, which attempts to determine the shortest possible “tour” to
pass through a set of “cities” while visiting each exactly once. The rows or columns
are the cities and the “tour” through all the rows or columns is their order. However,
the situation here differs from the traveling salesman problem because it lacks the
condition that the tour must return to the starting city.

Many fast heuristic methods are available to solve for the near-optimal tour which
can be modified for our problem. A near-optimal solution may be sufficient for prob-
lems where other sources of error, such as the quality of the input data, interfere with
ideal reordering. We selected two methods to find the proper ordering (both modified
to find the shortest path without returning to the city of origin): dynamic programming
[9] and mixed integer programming with subtour elimination [21]. The illustrations
in this paper primarily used the latter method and reverted to dynamic programming
when the subtour elimination method was too slow. The linear programming code is
given in [12].

A.2.2 Second order component function representation

Once the ordering of the rows and columns that optimally decreases the inter-row and
inter-column differences is found, the matrix A can be represented (i.e., fitted). The
use of B-spline or other basis functions for filtering is necessary even when all the
cells in this matrix are filled from the original data. If the filled cells are used as a
simple value table of property contributions, the resulting HDMR function generally
gives poor estimates for the test set unless a very large training set size T is used. The
error is decreased by the smoothing splines to allow for accurate property estimation
with a relatively low value of T .

A second order function is represented in the following way:

fi j (xi , x j ) ≈
n+1∑

p=−1

m+1∑

q=−1

β
i j
pq Bp(xi )Bq(x j ) (9)

As in Appendix A.1.2, the coefficients β
i j
pq are determined by using least squares

fitting. To simplify the computations and because we mostly dealt with datasets that
had the same number of substituents at each site, we set m = n (an exception is in
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Sect. 3.2). The significance testing procedure in Appendix C is used to determine the
minimum number of spline functions needed to give a good approximation.

B Inclusion and processing of component functions in HDMR

In this work each of the HDMR component functions is labeled as either include or
exclude based on whether it is employed in the HDMR expansion. Initially all of the
component functions except f0 are excluded. At any point in the process, the HDMR
expansion with the included component functions may be expressed as Eq. (4). The
residual error comes from a host of factors including an insufficient number or type
of component functions, the approximation of the component functions, data noise,
substituent ordering issues, and possible overfitting. As in Appendix A, the error ε

will be referred to as the residual property value of a sample. Each new component
function hk is intended to encompass some of the residual property value and reduce
the magnitude of ε. Introducing more component functions is done cautiously to avoid
overfitting.

If we wish to include a new component function gk in the HDMR expansion, this
new member is determined by fitting it to the residual property value:

ε = F(x) − f0 −
n p∑

p=1
p �=k

gp (10)

This equation may be used to determine if each of the excluded first order functions
is significant (see Appendix C). Then, the most significant one is included and all of
the now-included gp’s undergo an adjustment that is described later in this section. If
there are no significant first order component functions, a similar process is performed
on the excluded second order component functions. If a significant second order com-
ponent function is found, then it is included; after the latter step the included first
order functions are again adjusted, and the search restarts with the first order excluded
functions. If no significant first order functions are found, the included second order
functions are also adjusted before the search for second order functions restarts. An
overview of this process is given in Fig. 2.

This procedure ensures that the first order contributions are accounted for before
the second order contributions are considered. If this is not done, the higher order
component functions will not be determined correctly. For example, if the component
functions fi and f j are not determined first (i.e., see Eq. (2c)) then the component
function fi j will improperly contain both the joint and individual contributions from
xi and x j . A second order component function can still be considered for inclusion if
one or both of the corresponding first order component functions are not significant.

Each component function may be affected by the presence of other component
functions in the HDMR expansion since the set of gp component functions are also
subtracted from F(x) when calculating fi j (xi , x j ) (i.e., see Eq. (2c)). If a compo-
nent function gp is not correlated with the fi (xi ), f j (x j ), and fi j (xi , x j ) terms (i.e.,
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gp does not involve xi or x j ), then it should not effect the computation of gi j . In
practice, there may be some residual correlation due to various factors. However, this
circumstance does not prevent the procedure from functioning; the HDMR expansion
includes only statistically significant component functions (see Appendix C), and the
redundant correlated component functions are excluded.

As a consequence of the aforementioned interdependence, all of the included
HDMR component functions are adjusted whenever a new component function is
included in the expansion. This adjustment is typically slight, aming to reduce error
due to imperfect sampling, component function fitting, and the sequential determina-
tion process. This step is done using backfitting [8]: removing a component function
from the HDMR expansion and then recalculating it based on the residual property
values, which generally will be slightly different from what they were when the com-
ponent function was initially determined.

The component functions in the HDMR expansion are processed under backfit-
ting based on their order and sequence incorporated in the HMDR. A first order
component function under consideration is recalculated and remains in the HDMR
expansion, provided that it is still significant. The backfitting process is then repeated
for the remainder of the included first order component functions. The second order
component functions are processed in the same way with the following sequence of
operations: (i) backfit the included first order component functions, (ii) search for sig-
nificant component functions among the excluded first order functions, (iii) backfit the
included second order component functions, and (iv)search for significant component
functions among the excluded second order functions. This cycle continues in steps C,
D and E of Fig. 2 until the estimation quality for the training set converges or reaches
the maximum possible r2 value.

C Significance testing for the overall HDMR and individual component
functions

The F-test was used to determine whether an extra component function or fit-
ting parameter significantly improved the estimation quality [4] of the HDMR. The
F-test compares the squared differences between the values given by the original and
extended approximations. The squared differences are given as:

SO =
R∑

r=1

[
F(x(r)) − fO(x(r))

]2
(11)

SE =
R∑

r=1

[
F(x(r)) − fE (x(r))

]2
(12)

where fO(x) is the original approximation for F(x) that is currently in use and fE (x)

is the extended approximation that is being considered to replace fO(x). These equa-
tions are also characterized by the number of parameters employed to approximate
them: pO is the number of parameters used to specify fO , and pE is the number of
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parameters used to specify fE . The F-value is given by:

Fval = [SO − SE ]/(pE − pO)

SE/(N − pE )
(13)

The degrees of freedom (pE − pO) and (N − pE ) are used to calculate an F-distri-
bution [2], and a threshold F-value for the 99 % confidence level is determined. If a
calculated F-value is greater than this threshold F-value, the new approximation is
adopted, as it is considered significantly better than the original one. In this work the
F-test was used to determine (i) whether the HDMR approximation needs another
component function or (ii) whether more knots are needed for the spline function
approximation of a component function which is considered for inclusion.

When dealing with individual component functions we start with one knot. An
F-test can be used to determine whether an extra knot significantly increases the
estimation quality. If it does, then a new F-test is performed to see whether this
approximation can be significantly improved by adding another knot, etc., until the
maximum number of allowed knots is reached (i.e., at most m + 3). If the addition of
an extra knot is not significant, the component function remains unchanged.

When dealing with significance testing for the entire HDMR expansion, the F-test
was used to pick out the significant component functions. In this case the SO term
utilizes all of the included component functions while the SE term includes one addi-
tional component function. In this circumstance pO is the sum of all the knots in all
of the included component functions and the pE is the sum of pO and the number of
knots in the extra function. A first order component function with k knots means that
(pE − pO) = m + 3 and a second order component function with m knots means that
(pE − pO) = (m + 3)2.
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